A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis.
نویسندگان
چکیده
Four sibling species from the melanogaster subgroup (Drosophila melanogaster, D. simulans, D. sechellia, and D. mauritiana) were studied for genetic divergence, by high-resolution two-dimensional protein electrophoresis (2DE) coupled with ultrasensitive silver staining. A total of eight tissues from larval and adult developmental stages representing both gonadal (germ-line) and nongonadal (somatic) tissues were analyzed for protein divergence between species. Close to 400 polypeptides (protein spots) were scored from each tissue and species, and protein divergence was measured on the basis of qualitative differences (presence/absence) of protein spots in pairwise species comparisons. The observed levels of genic divergence varied among tissues and among species. When larval hemolymph proteins (which are known to be highly polymorphic) were excluded, there was no evidence to suggest that either the larval or adult-stage proteins, as a whole, are more diverged than the other; variation between different tissues rather than between developmental stages appears to be the most significant factor affecting genetic divergence between species. The reproductive tissue (testis and accessory gland) showed more divergence than did the nonreproductive tissue; D. melanogaster testis (from both larvae and adult males) showed the highest level of divergence. In view of the previous observation that D. simulans, D. mauritiana, and D. sechellia show similar but significantly less reproductive isolation from each other than from D. melanogaster, the present results suggest a correlation between the levels of reproductive-tract-protein divergence and the degree of reproductive isolation in these species.
منابع مشابه
Estimation of genetic variability in natural populations of Drosophila simulans by two-dimensional and starch gel electrophoresis.
Genic variation in natural populations of Drosophila simulans was surveyed using allozymic and two-dimensional electrophoretic techniques. Consistent with some previous reports, allozymic heterozygosity appeared lower than in the sibling species D. melanogaster (0.07 vs. 0.16). No variation was detected by two-dimensional electrophoresis of 19 lines scored for 70 abundant proteins. This is cons...
متن کاملGenic variation in abundant soluble proteins of Drosophila melanogaster and Drosophila pseudoobscura.
Genic variation was surveyed for 20 proteins of Drosophila melanogaster and 18 proteins of D. pseudoobscura. Analysis was by extraction and one-dimensional polyacrylamide gel electrophoresis under nondenaturing conditions, followed by staining with Coomassie Brilliant Blue to detect soluble proteins present in relatively large amounts ("abundant soluble proteins"). D. melanogaster was polymorph...
متن کاملThe ribosomes of Drosophila. II. Studies on intraspecific variation.
Electrophoretic comparisons of 40S and 55S ribosomal subunit proteins from 18 strains of Drosophila melanogaster revealed the virtual absence of allelic variation. More detailed two-dimensional studies on the large subunit proteins in 6 of the strains demonstrated additional complexity but still no interstrain variation. The significance of these results is discussed with respect to present est...
متن کاملHigh level of divergence of male-reproductive-tract proteins, between Drosophila melanogaster and its sibling species, D. simulans.
We compared male-reproductive-tract polypeptides of Drosophila melanogaster and D. simulans by using two-dimensional gel electrophoresis. Approximately 64% of male-reproductive-tract polypeptides were identical between two randomly chosen isofemale lines from these two species, compared with 83% identity for third-instar imaginal wing-disc polypeptides. Qualitatively similar differences were fo...
متن کاملStatistical inference of recombination-inducing genic features in Drosophila melanogaster
Building on the findings of Chan et al. [1], this work applies a variety of computational methods to further our limited understanding of recombination-initiating processes in Drosophila melanogaster. Using recently produced high resolution recombination maps for two different D. melanogaster populations, we identify recombination hotspots (regions of extremely elevated recombination activity) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 9 3 شماره
صفحات -
تاریخ انتشار 1992